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Moisture uptake in monolithic

and composite materials: edge correction

for rectanguloid samples
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Experiments on moisture uptake of monolithic and composite materials are generally
performed by immersing rectanguloid (square plate) samples in water. An edge correction
factor is derived which, in a mathematically simple way, takes water uptake through all
6 faces (2 broad and 4 smaller faces) into account. Analysis shows this edge correction factor
to be very accurate (deviations typically less than 2%). New expressions for moisture uptake
in composites with unidirectionally aligned fibres are derived, by incorporating this edge
correction factor as well as proper boundary conditions which depend on volume fraction
of fibres. Experimental data on moisture uptake in these types of composite samples
is successfully analysed using these expressions. C© 2002 Kluwer Academic Publishers

1. Introduction
Many materials that are exposed to a moist environment
degrade due to the uptake of water. Degradation of me-
chanical properties is important in polymers or polymer
based carbon fibre reinforced composites (CFRP). For
experimental determinations of moisture uptake in ma-
terials, small plate-shaped samples are generally used
(see e.g. Refs. [1–3]). The dimensions are usually cho-
sen such that one of the sides is much smaller than the
other two, and thus the moisture uptake is mainly de-
termined by the moisture uptake through the two broad
faces of the plate. In this approximation, diffusion is
sometimes assumed to occur in one direction only, i.e.
diffusion is one-dimensional (1D). Hence, if moisture
uptake is determined by classical Fickian diffusion, the
moisture concentration can be approximated by the well
known solution for diffusion in an infinite plate, which
yields a linear increase in the total amount of moisture
in the sample with t1/2 over the initial part of the mois-
ture uptake. However, in order to accurately compare
results obtained from samples with different shapes cor-
rections have to be made for so-called edge effects.
Shen and Springer [1] have in the past claimed to have
derived a correction factor for edge effects, and their
correction factor has been used in many publications
on moisture absorption [1–3].

In the present publication it will be shown that Shen
and Springer’s edge correction factor is inaccurate and
in Section 2.2 a new accurate edge correction factor will
be derived. The new edge correction factor will be used
to obtain expressions for the moisture uptake compos-
ites with unidirectional fibres (Section 2.3). The latter
expressions will be used to analyse data on the mois-
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ture uptake in composites with unidirectional fibres
(Section 3).

2. Mathematical treatment of diffusion
in monolithic and composite materials

2.1. 1D and 3D Fickian diffusion
If moisture uptake is determined by classical 1D Fickian
diffusion, the moisture concentration as a function of
time, t , and distance from the surface, x , is given by the
well known solution for diffusion in an infinite plate
(see for instance Refs. [4–6]):

c(x, t) − ci

cm − ci
= 1 − 4

π

∞∑
j=0

(2 j + 1)−2 sin
(2 j + 1)πx

a

× exp

[
− (2 j + 1)2 π2 Dx t

a2

]
(1)

where c(x, t) is the moisture concentration, ci is the
initial moisture concentration (assumed to be uniform),
cm is the maximum moisture concentration, Dx is the
diffusivity in the x direction (the direction normal to
the broad faces) and a is the thickness of the sample in
the x direction.

The average moisture content at time t , M(t), can be
obtained by integrating the above equation, which leads
to:

M = G(Mm − Mi ) + Mi (2)

where Mi is the initial moisture content, Mm is the
maximum moisture content, and
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G = G1D = 1 − 8

π2

∞∑
j=0

(2 j + 1)−2

× exp

[
− (2 j + 1)2 π2 Dx t

a2

]
(3)

For G < 0.6 the above equation can be approximated
very accurately by:

G1D
∼= 4

a

√
Dx t

π
(4)

Hence the moisture uptake is a linear function of t1/2

and the diffusion coefficient Dx can be obtained directly
from the initial slope of a plot of (M − Mi )/(Mm − Mi )
vs. t1/2/a, using:

slope ∼= 4

√
Dx

π
(5)

For samples of finite dimensions Equation 4 is only
a rough approximation and in order to make accu-
rate determinations of the diffusion constant, and to
be able to compare samples of different shapes, the up-
take through the smaller faces needs to be taken into
account. One could of course resort to the solution for
the full three dimensional problem of diffusion in a
rectanguloid (i.e. a rectanguloid) [2, 4]:

G3D = 1 −
(

8

π2

)3 ∞∑
k=0

∞∑
l=0

∞∑
m=0

exp

[
−π2t

(
(2k + 1)2

a2
Dx + (2l + 1)2

b2
Dy + (2m + 1)2

c2
Dz

)]
(2k + 1)2(2l + 1)2(2m + 1)2

(6)

where k, l and m are positive whole integers, Dx ,
Dy and Dz are the diffusion coefficients in the direc-
tion of the 3 axes, and a, b and c are the sides of
the rectangular parallelepiped (or rectanguloid). (See
Fig. 1, we will take a ≤ b ≤ c.) In monolithic mate-
rials Dx , Dy and Dz will, in general, be equal. For
a � b, c and G3D < 0.6 a plot of G3D vs. t1/2/a is
again in good approximation linear (see Fig. 2 and
Ref. [2]). In analogy to the 1D diffusion case we can
thus define an effective apparent diffusion coefficient,
Deff, by:

slope ∼= 4

√
Deff

π
(7)

2.2. Edge correction factors for monolithic
rectanguloids

Equation 6 can only be evaluated at the expense of much
more computer time than is needed for evaluation of
Equation 1. A more important drawback of Equation 6
is that although for a � b, c and G3D < 0.6 a plot of G
vs. t1/2 is again approximately linear [2], a method for
calculation of the diffusion constant from the slope of

Figure 1 Orientation of rectanguloid with respect to the axes.

such a plot is not easily determined. For this reason it
is very useful to derive a correction factor, f , that takes
the influence of diffusion through the smaller faces into
account such that:

G3D = f G1D(G3D < 0.6) (8)

and hence,

Dc = f −2 Deff (9)

where Dc is the diffusion constant estimated from mois-
ture uptake data for in a rectangular paralellepiped cor-
rected using factor f . Shen and Springer [1] have in the
past claimed to have derived just such a correction fac-
tor. For D = Dx = Dy = Dz Shen and Springer’s edge
correction factor is given as:

Figure 2 Total normalised moisture uptake in a rectanguloid (G3D) as
a function of t1/2.
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f ≈ fS&S = 1 + a

b
+ a

c
(10)

However, as will be shown below, Shen and Springer’s
edge correction factor is inaccurate and overestimates
f by a considerable amount. In the following we will
show that a much more accurate edge correction factor
can be derived.

For the derivation of the edge correction factor we
will consider a rectanguloid solid of dimensions a, b, c
(a ≤ b ≤ c) which is exposed to a constant humidity
environment.

In order to derive the general mathematical form
that f will take we will first consider an approximate
treatment. In this first approximate treatment we will
make the following simplifying assumptions:

i. the concentration at any given point in the solid
is determined solely by the time and the distance to the
nearest external surface.

ii. the concentration drops linearly with distance to
the nearest surface.

Consider the time, tx , at which the moisture has just
reached all parts of the solid, i.e. the time at which the
moisture just reaches the point(s) furthest away from
the surfaces. To calculate the average moisture content
it is convenient to subdivide the solid into three types
of rectanguloids according to the number of directions
from which diffusion has occurred into these rectan-
guloids. For instance (see Fig. 3), on all 8 corners of
the solid, cubes of side 1/2a are found in which the
concentration profile is determined by diffusion from
three mutually perpendicular directions. Connecting
pairs of these cubes along the four smaller faces of the
solid are rectanguloids in which the diffusion profile is
determined by diffusion from two directions. In the re-
mainder of the solid, the diffusion profile is determined
by diffusion perpendicular to the broad faces only. Prop-
erties of the three types of rectanguloids (termed A, B
and C, respectively) are listed in Table I.

The average concentration in rectanguloids of each
type is constant and can be calculated through integra-
tion. From the data in Table I the average concentration
in the solid, C , equals:

C = a3λ3D + a2 [(b − a) + (c − a)] λ2D + a(b − a)(c − a)1/2

a b c
(11)

If the diffusion had only occurred through the two broad
faces the average concentration would have been 1/2,
hence it follows that,

f = C

1/2
= 1 + 2(λ2D − 1/2)

a[(b − a) + (c − a)]

bc

+ 2(λ3D − 1/2)
a2

bc
(12)

TABLE I Properties of rectanguloids in Fig. 3

Number Average
Rectanguloid of diffusion Total volume concentration
type directions rectanguloid in rectanguloid

A 3 a3 λ3D

B 2 (b − a)a2 + (c − a)a2 λ2D

C 1 (b − a)(c − a)a 0.5

Figure 3 Rectanguloid divided into 3 types of different sub-
rectanguloids.

which simplifies to:

fSSC = 1 + λ1
a

b
+ λ1

a

c
+ λ2

a2

bc
(13)

where λ1 and λ2 are functions of λ2D and λ3D . There
are several ways in which λ1 and λ2 (or λ2D and λ3D)
can be derived†, the most accurate analysis being ob-
tained by fitting their values using the complete 3D
diffusion equation and calculating the slope of the ini-
tial part. Thus, in the next stage of the analysis, average
moisture uptake as a function of t was calculated with
Equation 6 for various shapes of rectanguloids, using
D = Dx = Dy = Dz . From these profiles Deff and Dc

were obtained from the slope of a plot of G vs. t1/2 (G
from 0 to 0.5) for:

i. f = 1 (i.e. assuming one dimensional diffusion
only),

ii. f = fS&S (Shen and Springer’s edge correction),
iii. f = fSSC (our edge correction factor, Equa-

tion 13), with optimised values for λ1 and λ2. It was
found that for Equation 13 the best results were obtained
for λ1 = 0.54, λ2 = 0.33. Hence Equation 13 becomes:

fSSC = 1 + 0.54
a

b
+ 0.54

a

c
+ 0.33

a2

bc
(14)

†Using assumptions (i) and (ii) one finds λ1 = 1/3 and λ2 = 1/6. Anal-
ysis of the accuracy of this expression using the true 3D diffusion
equation shows that the resulting edge correction factor is more accu-
rate than Shen and Springer’s one. However, the edge correction factor
presented in Equation 14 is clearly the most accurate of all expressions
considered.
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T ABL E I I Dc calculated by applying edge correction factors derived
by Shen and Springer ( fS&S) and by the present authors ( fSSC )

Deff/D (from Dc/D Dc/D
a (mm) b (mm) c (mm) Equation 7) (using fS&S) (using fSSC )

4 4 4 5.73 0.637 0.996
4 8 8 2.63 0.658 1.009
4 15 15 1.68 0.716 0.989
4 40 40 1.20 0.83 0.981
4 100 100 1.06 0.906 0.984
4 1000 1000 1.00 0.985 0.993
4 8 15 2.13 0.682 1.028
4 8 40 1.83 0.714 0.989
4 15 15 1.68 0.716 0.99
4 15 40 1.42 0.763 0.981

Final results are presented in Table II, which shows:

a. fS&S (Shen and Springer’s edge correction) is
quite inaccurate and it considerably over corrects for
the edge effect for all sample shapes. For realistic sam-
ple shapes deviations in D are between 16 and 37%.

b. Equation 13 gives an accurate approximation for
the edge effect. Deviations in D are typically less than
2%.

Thus, in concluding this section, in analysis of moisture
uptake data for a finite monolithic sample the diffusion
coefficient can be obtained from the initial slope (from
G = 0 to 0.5) of a sorption curve via Equation 5, where
the edge correction factor f is given by Equation 14.

2.3. Diffusion in unidirectional composites
In unidirectional composites the diffusion rates can, in
general, be expected to be direction dependent. Several
authors [1, 2] presented a mathematical treatment of
this, but an overhaul of this work has become necessary
because:

1. In earlier work [1, 2] Shen and Springer’s inaccu-
rate edge correction factor, fS&S , was used.

2. Most expressions used in Refs. [1, 2] for diffusion
in composites are only valid for steady state conditions.
The limitations for water uptake were not assessed in
Refs. [1, 2].

3. In Refs.[1, 2], boundary conditions were consid-
ered to be independent of v f . This is not valid for water
uptake in composites.

A modified treatment of diffusion in unidirectional
composites is presented below.

In a unidirectional composite containing cylindrical
fibres, the thermal conductivity of the composite normal
to the fibres, K⊥, can be measured by taking a large thin
plate and imposing two temperatures T1 and T2 on the
two broad faces. In steady state conditions, K⊥ is in
good approximation given by (see Ref. [1]):

K⊥ ∼=
(

1 − 2

√
v f

π

)
Kr + Kr

Bk


π − 4√

1 − B2
k v f

/
π

× tan−1

√
1 − B2

k v f
/
π√

1 + B2
k v f

/
π


 (15)

Bk = 2

(
Kr

K f
− 1

)
(16)

where v f is the volume fraction of fibres, Kr is the ther-
mal diffusivity in the resin/matrix, and K f is the thermal
diffusivity in the fibres. As heat conduction in solids
and diffusion are equivalent in mathematical terms (see
e.g. Ref. [4]) it follows that, under equivalent boundary
conditions, the diffusivity in the composite normal to
the fibres, D⊥, is in good approximation given by:

D⊥ ∼=
(

1 − 2

√
v f

π

)
Dr + Dr

BD


π − 4√

1 − B2
Dv f

/
π

× tan−1

√
1 − B2

Dv f
/
π√

1 + B2
Dv f

/
π


 (17)

BD = 2

(
Dr

D f
− 1

)
(18)

where Dr is the thermal diffusivity in the resin/matrix,
and D f is the thermal diffusivity in the fibres.

In the steady state, the diffusivity in the composite
parallel to the fibres, D//, is simply given by:

D// = (1 − v f )Dr + v f D f (19)

It is important to note that the above equations are only
valid provided:

1. Diffusion (heat conduction) occurs under steady
state conditions i.e. local moisture concentration
c(x, y, z) (temperature T (x, y, z)) is independent of
time.

2. Boundary conditions imposed are constant and
independent of v f .

However, moisture absorption is typically not a steady
state process, and boundary conditions will generally
depend on v f . This means that the validity of the above
equations for moisture absorption in composites is lim-
ited and has to be carefully assessed for each case.

As an illustration of complexities encountered in
composites we consider the case where D f � Dr and
both the saturation levels in resin and fibre, Mm,r and
Mm, f are significant. In this case diffusion of moisture
will initially occur only in the matrix and only after the
matrix has taken up a substantial amount of water the
fibres will take up significant amounts of water, essen-
tially acting as a sink for moisture within the matrix.
Thus, steady state can only be reached a long time after
substantial diffusion through the matrix has occurred.
In such a case moisture uptake is a two stage process
and solutions can not be derived on the basis of a sin-
gle stage 3D diffusion equation (or a 1D equation with
edge correction) with appropriate insertion of expres-
sions for D⊥ and D//

‡.

‡Note that this is contrary to suggestions made in Ref. [1].
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In general terms, the above equations can yield so-
lutions or partial solutions for moisture uptake in the
following cases:

A. Mm, f � Mm,r . In this case moisture entering the
fibre is insignificant. A complete solution can be ob-
tained.

B. D f = 0. No moisture enters the fibre. A complete
solution can be obtained.

C. a/
√

Dr � d/
√

D f (d is the fibre diameter) Mois-
ture uptake in the fibre becomes significant only in a
second stage after the resin has saturated. A solution
for the first stage can be obtained.

In the following we will obtain solutions for cases A,
B, and the first stage of C.

In obtaining the solutions for the above cases we first
need to obtain the appropriate boundary condition. As at
each outer surface of the composite contains a fraction
v f of fibre ends which do not absorb water, the average
boundary condition at the outer surfaces is given by:

c(surface) = (1 − v f )Mr,m (20)

(Note that this is different from the steady state heat con-
duction composites for which the surface temperature
equals the environment temperature, i.e. the boundary
condition is independent of v f .) The volume averaged
diffusivities parallel and normal to the fibres can now be
obtained in the following manner. As no water is taken
up by the fibre, the diffusivity in the direction parallel
to the fibres is simply given by:

D// = Dr (21)

Average diffusivity normal to the fibres can be analysed
using the simplified geometry of blocking of flow in a
square packing array depicted in Fig. 4. Using Fick’s
first law:

F = −D
	c

	x
(22)

it follows:

Figure 4 Simplified geometry for diffusion normal to fibres in a square
packing array.

D⊥ = Dr

(
1 − d

w

)
[1 − v f ]−1 (23)

where d is the diameter of the fibre and w is the width
of the square. In this equation the term [1 − v f ]−1 re-
flects the change in boundary condition (average sur-
face concentration) resulting from the introduction of
the impermeable fibres. (This term does not appear in
the case of steady state heat conduction in a composite
and was not accounted for in Refs. [1, 2].) From the
latter equation it follows:

D⊥ =

(
1 − 2

√
v f

π

)
1 − v f

Dr (24)

If the fibres are oriented relative to the axes in the man-
ner presented in Fig. 5 then the diffusion coefficients in
the different directions are given by:

Dx = D// cos2 α + D⊥ sin2 α (25)

Dy = D// cos2 β + D⊥ sin2 β (26)

Dz = D// cos2 γ + D⊥ sin2 γ (27)

From Equations 21 and 24–27 combined with Equa-
tions 2 and 6 the moisture uptake in a rectanguloid con-
taining unidirectional fibres which are aligned in any
direction with respect to the axis of the sample can be
calculated, subject to specific conditions (see below).
However, as before, Equation 6 for 3D diffusion will
complicate the mathematics. Hence, also here it is ad-
vantageous to introduce an edge correction factor.

From Equation 6 it follows that the edge correc-
tion factor for materials in which Dx �= Dy �= Dz can
be derived simply by substituting a/

√
Dx , b/

√
Dy and

c/
√

Dz for a, b and c in the corresponding equations.
Thus an accurate edge correction factor for materials
with direction dependent diffusivity is:

f = 1+λ1
a

b

√
Dy

Dx
+λ1

a

c

√
Dz

Dx
+λ2

a2

bc

√
Dz Dy

D2
x

(28)

Figure 5 Orientation of fibres with respect to the axes.
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(Note that in substituting a/
√

Dx , b/
√

Dy and c/
√

Dz

for a, b and c, the axes are chosen such that a/
√

Dx ≤
b/

√
Dy ≤ c/

√
Dz . Hence a is no longer necessarily the

shortest edge of the rectanguloid.)§ Hence for G < 0.6
the moisture uptake can be obtained from:

G ∼= f
4

a

√
Dt

π
(29)

Thus for G < 0.6 the moisture uptake can be approxi-
mated accurately, using Equations 21 and 24–27 com-
bined with Equation 2. As specific examples we will
consider the cases of rectanguloids with fibres parallel
to one of the axes of the sample.

2.3.1. Case 1: Df = 0 and α = 0
As the fibres are parallel to the x-axis (i.e. α = 0):

Dx = D// (30)

Dy = Dz = D⊥ (31)

The moisture uptake in the initial part (G < 0.6) can be
obtained by using:

Deff (α = 0)

∼= Dr


1 + λ1

(
a

b
+ a

c

)√
1 − 2

√
v f /π

1 − v f




2

(32)

(here second order edge effects are neglected by taking
λ2 = 0). The saturation level in the composite is given
by:

Mm,c
∼= (1 − v f )Mm,r (33)

2.3.2. Case 2: Df = 0 and β = 0
In a similar fashion one obtains:

Deff (β = 0) ∼= Dr
1 − 2

√
v f /π

1 − v f

×
[

1 + λ1

(
a

b

√
1 − v f

1 − 2
√

v f /π
+ a

c

)]2

(34)

The saturation level is given by Equation 33.

§Similarly, Shen and Springer’s edge correction factor for materials with
direction dependent diffusivity becomes:

fS&S = 1 + a

b

√
Dy

Dx
+ a

c

√
Dz

Dx

Figure 6 Deff/Dr vs. fibre volume fraction for unidirectional composite
rectanguloids of different shapes (a × b × c). Fibres are aligned along
the y-axis (i.e. parallel to edge of length b).

2.3.3. Case 3: Df = 0 and γ = 0
This is obtained by exchanging b and c from the previ-
ous equation:

Deff (γ = 0) ∼= Dr
1 − 2

√
v f /π

1 − v f

×
[

1 + λ1

(
a

b
+ a

c

√
1 − v f

1 − 2
√

v f /π

)]2

(35)

The saturation level is given by Equation 33.
To illustrate the results obtained with Equations 32

and 34, Deff/Dr for an infinitely large plate and for finite
plates (rectanguloids) of various shapes are presented
in Figure 6.

3. Experimental
In order to validate the expressions derived in the pre-
vious section, moisture absorption experiments were
performed on sections cut from a single 1.6 mm thick
panel with cylindrical fibres unidirectionally aligned
parallel to the surface (for full details see Ref. [7]) as
well as on sections from a corresponding unreinforced
resin panel. The resin system in both cases was epoxy
blended with 30 wt% of thermoplastic (PES). The un-
reinforced panel was produced at ICI Wilton, using a
standard technique for production of neat resin plaques.
The thermoplastic was dissolved in a solvent and then
added to the epoxy and hardener. The solvent was then
evaporated off. Next, each blend was cast into an open
mould, preheated to 413 K, and degassed for 30 min un-
der vacuum to remove residual solvent and trapped air.
Samples were then cured at 458 K for 120 min and al-
lowed to cool to room temperature for a further 120 min.
The reinforced panels (also produced at produced at ICI
Wilton) were manufactured using unidirectional carbon
tape, which was pre-impregnated with the 30% thermo-
plastic resin before lay-up. The panel was made to be
approximately 1.6 mm thick, and 130 mm square. The
cure was carried out in a pressclave using edge dams

292



T ABL E I I I Dimensions of rectanguloid shaped composites used for
moisture uptake experiments. Fibres are aligned along the y-axis (i.e.
parallel to edge of length b)

Type a (mm) b (mm) c (mm)

A 1.6 10 120
B 1.5 120 10
C 1.6 20 60
D 1.5 60 20
E 1.5 30 40
F 1.6 10 10
G 1.6 20 20
H 1.6 40 40
I 1.5 60 60

to ensure maximum flow through the panel thickness,
to minimise voidage. The cure cycle involved a heat-
ing ramp to 458 K over 80 min, a dwell at 458 K for
180 min and a ramp down to room temperature over
80 min.

From the saturation levels of the composites and
the corresponding unreinforced matrix the fibre con-
tent was calculated as 74 vol% (using Equation 33).
Optical microscopy on cross sections of the samples
(see Ref. [7]) confirmed that porosity in the samples
was low and that the fibres in the reinforced panel were
generally well aligned.

The reinforced panel was cut into rectanguloid
samples of varying shape ranging from 1.6 × 10 ×
100 mm to 1.6 × 100 × 10 mm and 1.6 × 60 × 60 to
1.6 × 10 × 10 mm (a × b × c), see Table III, with fibres
aligned in the b direction. For some of the sample
types duplicate experiments were employed, i.e. two
nominally identical samples cut from the same panel
and with identical dimensions and identical direction
of fibres, were exposed in the same bath at the same
time. The samples were totally immersed in water at
25◦C and for all samples the initial part of the curve
of (M − Mi )/(Mm − Mi ) vs. t1/2 was in good approx-
imation a straight line. Mm was assumed to be iden-
tical for all samples and Deff was calculated from the
slope.

4. Results and discussion
It should be noted that throughout the present analysis
we will assume that the fibres do not absorb moisture.
It is believed that this is a good approximation for the
carbon fibres.

When comparing nominally identical samples gen-
erally some limited variability in measured Deff was
noted. This variability is thought to be related to local
variability in volume fraction of fibres within the panel.
The magnitude of this variability is consistent with v f

varying by about 0.005 vol% between samples (around
the average value of 0.74 vol%). (One experiment with
an anomalously high value of Deff/Dr was ascribed to
a flawed section of the panel and omitted from the anal-
ysis.)

To analyse the data, first the theoretical predictions
for Deff/Dr were calculated using Equations 32 and 34
(using λ1 = 0.54, according to our edge correction fac-

Figure 7 Deff/Dr for unidirectional composite rectanguloids of differ-
ent shapes.

tor). This data was used to obtain Dr through fitting to
the experimental data and in Fig. 7 the resulting exper-
imental Deff/Dr values are compared with the theoret-
ical predictions. Fig. 7 shows a good correspondence
between experimental and measured Deff/Dr (χ2 is 1.0)
proving that Equations 32 and 34 (which incorporate
our new edge correction factor) are sound. Conversely,
employing Shen and Springer’s edge correction factor
(i.e. Equations 32 and 34 with λ1 = 1) yields a much
worse correspondence (χ2 is about 6).

For a final comparison of the model predictions with
the data the ratio of the diffusion coefficients of the
1.6 × 100 × 10 mm composite panel to that of the un-
reinforced panel was calculated from the experimental
data. This yields 0.11, which is in reasonable agreement
with the results presented in Fig. 7. Thus, it is concluded
that the present analysis leading to Equations 34 and 35
can explain all observations of the relative water uptake
rates of the present unidirectionally reinforced panels
and the unreinforced panel.

5. Concluding remarks
The analysis of edge effects in Section 2.2 has shown
that Shen and Springer’s edge correction factor, fS&S

(Equation 10), is inaccurate and analysis of experiments
as presented in Section 3 further confirmed this result.
As fS&S has in the past been used in many analyses
of experimental data of moisture uptake D values ob-
tained in these works should in general be corrected by
multiplying with ( fS&S/ fSSC )2. The magnitude of this
correction is in the order of 15 to 30% for typical sample
dimensions. It is further noted that also for disc shaped
samples correction for edge effects is necessary. With
the concepts presented in Section 2.2, in principle, edge
correction factors for discs and other types of regular
shapes can be derived.

The treatment presented in Section 2.3 shows that
introduction of fibres that take up little or no water
reduces the rate of water uptake in two ways:

1. the maximum moisture uptake is reduced.
2. the diffusion rate of water in a direction perpen-

dicular to the fibres is reduced.

Thus whilst the reduction of maximum moisture up-
take is independent of fibre orientation the diffusion
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rate of water is strongly influenced by the way in which
the fibres are oriented. As an example Fig. 7 shows
that for an infinitely large plate Deff/Dr = 0.11, i.e. the
introduction of 0.74 vol% of cylindrical fibres both de-
creases the maximum water uptake to 26% of that of
the unreinforced resin and decreases the absorption rate
by a factor 0.11, provided the plate is flawless and has a
homogeneous distribution of fibres. Local variations of
density of fibres and other flaws which yield high diffu-
sivity paths perpendicular to the fibres can significantly
increase the rate of moisture uptake in unidirectional
panels.
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